Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1.

نویسندگان

  • Takashi Kimura
  • Masayuki Nakamori
  • John D Lueck
  • Pierre Pouliquin
  • Futoshi Aoike
  • Harutoshi Fujimura
  • Robert T Dirksen
  • Masanori P Takahashi
  • Angela F Dulhunty
  • Saburo Sakoda
چکیده

Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the alternative splicing of mRNAs of two major proteins of the sarcoplasmic reticulum, the ryanodine receptor 1 (RyR1) and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) 1 or 2. The fetal variants, ASI(-) of RyR1 which lacks residue 3481-3485, and SERCA1b which differs at the C-terminal were significantly increased in skeletal muscles from DM1 patients and the transgenic mouse model of DM1 (HSA(LR)). In addition, a novel variant of SERCA2 was significantly decreased in DM1 patients. The total amount of mRNA for RyR1, SERCA1 and SERCA2 in DM1 and the expression levels of their proteins in HSA(LR) mice were not significantly different. However, heterologous expression of ASI(-) in cultured cells showed decreased affinity for [3H]ryanodine but similar Ca2+ dependency, and decreased channel activity in single-channel recording when compared with wild-type (WT) RyR1. In support of this, RyR1-knockout myotubes expressing ASI(-) exhibited a decreased incidence of Ca2+ oscillations during caffeine exposure compared with that observed for myotubes expressing WT-RyR1. We suggest that aberrant splicing of RyR1 and SERCA1 mRNAs might contribute to impaired Ca2+ homeostasis in DM1 muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca-ATPase in myotonic dystrophy type 1

Division of Molecular Bioscience, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra ACT 2601, Australia, Department of Neurology, Osaka University Graduate School of Medicine, D-4, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan and Department of Pharmacology and Physiology, University of Rochester Medical Center, PO Box 711, 601 Elmwood Avenue, Rochester,...

متن کامل

Altered Ca2+ Homeostasis and Endoplasmic Reticulum Stress in Myotonic Dystrophy Type 1 Muscle Cells

The pathogenesis of Myotonic Dystrophy type 1 (DM1) is linked to unstable CTG repeats in the DMPK gene which induce the mis-splicing to fetal/neonatal isoforms of many transcripts, including those involved in cellular Ca2+ homeostasis. Here we monitored the splicing of three genes encoding for Ca2+ transporters and channels (RyR1, SERCA1 and CACN1S) during maturation of primary DM1 muscle cells...

متن کامل

Divergent Mechanisms Leading to Signaling Dysfunction in Embryonic Muscle by Bisphenol A and Tetrabromobisphenol A.

Bisphenol A (BPA) and its brominated derivative tetrabromobisphenol A (TBBPA) are high production volume chemicals used in the manufacture of various consumer products. Although regarded as endocrine disruptors, these chemicals are suspected to exert nongenomic actions on muscle function that are not well understood. Using skeletal muscle microsomes, we examined the effects of BPA and TBBPA on ...

متن کامل

Myotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells.

Myotonic dystrophy (DM), the most prevalent muscular disorder in adults, is caused by (CTG)n-repeat expansion in a gene encoding a protein kinase (DM protein kinase; DMPK) and involves changes in cytoarchitecture and ion homeostasis. To obtain clues to the normal biological role of DMPK in cellular ion homeostasis, we have compared the resting [Ca2+]i, the amplitude and shape of depolarization-...

متن کامل

Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.

After excitation of skeletal muscle, the disturbed ion homeostasis is restored by Na+, K+ ATPase of the sarcolemma and Ca2+ ATPase of the sarcoplasmic reticulum (SR). Contrary to Na+, K+ ATPase, the concentration and isoenzyme distribution of SR Ca2+ ATPase in human skeletal muscle depend on fibre type and age. In cultured human muscle cells the concentration and activity of Na+, K+ ATPase and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 14 15  شماره 

صفحات  -

تاریخ انتشار 2005